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Abstract. In the domain of condition-based maintenance (CBM), persistence of machine states 

is a valid assumption. Based on this assumption, we present an improved Hidden Markov 

Model (HMM) learning algorithm for the assessment of equipment states. By a good 

estimation of initial parameters, more accurate learning can be achieved than by regular HMM 

learning methods which start with randomly chosen initial parameters. It is also better in 

avoiding getting trapped in local maxima. The data is segmented with a change-point analysis 

method which uses a combination of cumulative sum charts (CUSUM) and bootstrapping 

techniques. The method determines a confidence level that a state change happens. After the 

data is segmented, in order to label and combine the segments corresponding to the same 

states, a clustering technique is used based on a low-pass filter or root mean square (RMS) 

values of the features. The segments with their labelled hidden state are taken as ‘evidence’ to 

estimate the parameters of an HMM. Then, the estimated parameters are served as initial 

parameters for the traditional Baum-Welch (BW) learning algorithms, which are used to 

improve the parameters and train the model. Experiments on simulated and real data 

demonstrate that both performance and convergence speed is improved. 

1. Introduction 

In modern industry, the demands of low cost, high reliability and human safety are highly increasing, 

therefore effective maintenance strategies to increase profitability and competitiveness play an 

important role in industry. Condition Based-Maintenance (CBM) is a decision-making strategy based 

on real-time diagnosis of impending failures and prognosis of future equipment health [1]. Diagnostics 

is an assessment of the current status of a system. It detects errors and faults based on the observed 

abnormality of the system. Prognostics deal with the fault and degradation prediction before they 

occur. Diagnostics and prognostics can be performed separately, however a combination of both tasks 

can decrease costs and improve efficiency and accuracy of the results, therefore diagnostics can be 

used as a basis and pre-processing step for prognostics in hybrid approaches.  

In this paper, we focus on data driven diagnostics which aim at transferring the data collected by 

the sensors into relevant models. A statistical approach - Hidden Markov Model (HMM) has been 

successfully applied to several applications in both academic and engineering fields [2]. Most often, an 

HMM is built and trained with randomly initialized parameters, which increases the risks of 

inaccuracy by getting trapped into local maxima. The proposed method estimates initial parameters of 

HMM which are assumed close to the optimal ones. 

By the nature of industrial machines and equipment, the health states can be safely assumed to 

remain stable (i.e. persistent) during the whole life time, whereas in other application domains of 

HMM, states can fluctuate quite heavily. In this paper, we focus on persistent states. Based on this 

assumption, the signal can be split into several large segments by a segmentation algorithm, where 
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each segment corresponds to a regime with relatively stationary behaviour. In general, the states are 

differentiated by the differences of their observations, i.e., ( | ) ( | )i jP O S P O S , i  and j  represent 

different states. In order to identify the different regimes based on their different behaviours, i.e., 

determine changes of regimes, change detection technique is required. The Student t-test [3] is a 

simple parametric technique to detect a signal change, but it only addresses the changes of the mean 

value. Regression analysis [4] can also be applied for change detection but it is difficult to deal with 

small deviations. Bayesian analysis [5] is an option as well however it requires the mathematical 

model of the data known in advance. All the assumptions made by the parametric techniques cannot 

be always met in real applications. Therefore, the non-parametric techniques such as Mann-Kendall 

[6] and cumulative sum charts (CUSUM) [7] are preferable and more suitable in sequential analysis 

[8]. Mann-Kendall technique evaluates the sign of all pairwise differences of observed values and is 

widely used in climate change analysis, while CUSUM detects systematic changes over time and has 

the advantages of its simplicity, the graphical interpretation of results and is able to detect abnormal 

patterns, etc [8]. CUSUM has been successfully used in fault detection and change detection in 

mechanical systems [7]. Here we use change-point analysis method proposed by Taylor [9] which uses 

a combination of CUSUM and bootstrapping techniques. It detects change-points when a change 

occurs in a signal, where the change-points can be seen as state transition points. Based on this 

method, the observations can be segmented at the detected change-points. Moreover, in order to 

combine the homogenous segments, clustering algorithms are used on the low-pass filtering or root 

mean square (RMS) values of the feature data. As a result, each segment is clustered and labelled, 

representing a different hidden state. These learned hidden states can be used to compute the initial 

parameters of an HMM model. 

The remainder of the paper is as follows. Section 2 gives an overview of the basic theories of 

HMM and the problems with the learning method. Section 3 shows the basic ideas of the proposed 

method and summarizes the approach methodology of this paper. Section 4 shows the details of the 

algorithm of change-point analysis and the estimation of initial parameters. Simulation and 

experimental results are illustrated and analysed in Section 5 and Section 6. In the end, conclusions are 

given in Section 7. 

2. Hidden Markov Model 

2.1. Theory 

A Hidden Markov Model (HMM) is a doubly stochastic process. The underlying process is 

characterized by a Markov chain and unobservable (hidden) but can be observed through another 

stochastic process which emits the sequence of observations. An example of an HMM is shown in 

shown in figure 1. 

 

Figure 1. A Hidden Markov Model. 

 

An HMM is described by the following parameters [2]: 

 N , the number of states in the model. The individual states are denoted as 1 2{ , , , }NS S S S ; 
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 M , the number of distinct observation symbols per states. The individual symbols are denoted 

as 1 2{ , , , }MV V V V ; 

 { }ijA a  the state transition probability distribution, where 

 
1( | ),1 , .ij t j t ia P q S q S i j N      (1) 

 { ( )}j kB b V , the observation symbol probability distribution in state 
jS , where 

 ( ) ( | ),1 ,1 .j k t k t jb V P o V q S j N k M        (2) 

 { }i  , the initial state distribution, where 

 
1( ),1 .i iP q S i N      (3) 

where to  and tq  are the observation and state at time t  respectively. Let 1 2{ , , , }To o o  denote a 

sequence of all observation symbols up to time T  where an observed point to  is taken at time t  and

(1 )to V t T   . The actual state sequence up to time T  is denoted by 1 2{ , , , }Tq q q , where a state

(1 )tq S t T   . For convenience, a compact notation ( , , )A B   is used to represent an HMM 

model. Various types of HMMs exist, and in this paper, only ergodic HMMs with discrete symbol 

observations are considered. 

In real-world applications, three basic problems related to HMMs have been identified and solved 

[2].  

 Evaluation: Given an HMM   and a sequence of observations 1 2{ , , , }TO o o o , what is the 

probability ( | )P O   that the observations are generated by the model? 

 Decoding: Given an HMM   and a sequence of observations 1 2{ , , , }TO o o o , what is the 

most likely sequence of states 1 2{ , , , }TQ q q q , in the model that produced the observations? 

 Learning: Given a model and a sequence of observations, how to adjust the parameters 

( , , )A B   in order to maximize the probability of the observations given this model

( | )P O   ? 

For the learning problem, there is no analytical solution; however, a locally maximized parameter 

can be achieved with an iterative procedure such as the Baum-Welch (BW) method (i.e. Expectation-

Maximization algorithm). The probability of being in state iS  at time t  and the state jS  at time 1t 

given the model and observation sequence is defined by [2]: 

 
1

1 1

1 1

1 1

1 1

( , ) ( , | , )

( ) ( ) ( )

( | )

( ) ( ) ( )

( ) ( ) ( )

t t i t j

t ij j t t

t ij j t t

N N

t ij j t t

i j

i j P q S q S O

i a b o j

P O

i a b o j

i a b o j

 

 



 

 



 

 

 

 

  







 

(4) 

Where 

 

1

1

( ) ( ) ( )
N

t t ij j t

i

j i a b o  



  (5) 

 

1 1

1

( ) ( ) ( )
N

t ij j t t

j

i a b o j  



  (6) 

Thus, the probability of being in state iS  at time t  is: 
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1

( ) ( , )
N

t t

j

i i j 


  (7) 

The expected number of transitions from iS is

1

1

( )
T

t

t

i




 ; the expected number of transitions from iS  to 

jS is

1

1

( , )
T

t

t

i j




 . The re-estimated parameters of an HMM   can be calculated by formulas as below: 

 
1( )i i   (8) 

 1

1

1

1

( , )

( )

T

t

t
ij T

t

t

i j

a

i

















 (9) 

 

1

1

( ) ( , )

( )

( )

T

t t k

t
j k T

t

t

i o V

b V

i

 











 (10) 

where  

 
1

1
( ) max[ ( ) ] ( ),2 ,1t t ij j t

i N
j i a b o t T j N  

 
      (11) 

2.2. Failure of learning method 

The idea of the BW learning method is that the initial parameters are randomly generated at first and 

then the parameters are iteratively re-estimated as long as the new model has a better log-likelihood 

than the previous one, i.e., ( | ) ( | )P O P O  , until it converges. Rabiner [2] pointed out that it has 

the risk that the log-likelihood converges to local maxima, which is shown in figure 2. The learning is 

repeated 10 times, and each time random initial parameters are chosen. 

 

Figure 2. Convergence of log-likelihood values. 
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In this experiment, the training data consisted of 10 sequences of 1000 observations generated by a 

randomly generated HMM. The parameters of the generated HMM model are shown in table 1. 

 

Table 1. Parameters of the generated HMM model. 
   

Initial probabilities Transition probabilities Observation probabilities 

 0.33 0.33 0.33   

0.990 0.010 0

0.005 0.990 0.005

0.001 0.001 0.998

A

 
 


 
  

 

0.950 0.050

0.478 0.522

0.244 0.756

B

 
 
 
  

 

 

The data set is always the same one for each run, however due to the randomness of the initial 

parameters generated by BW learning algorithm; the results are different each time. Some runs start 

with better initial parameters and end earlier, and some start with bad parameters which end later. In 

figure 2, there is one run which falls into local maxima with a log-likelihood around -0.68, while other 

9 runs reach a better result around -0.55. 

3. Overview of Methodology 

3.1. Assumptions 

The assumptions made by the proposed method are given below: 

 The HMM model is assumed to be an ergodic HMM, meaning that the hidden states are fully-

connected, in other words, each state can stay at the same state or transfer to any other state at 

the next time stamp. The ergodic HMM allows revisiting previous states. This is a proper 

assumption when dealing with machines or equipment which can be repaired during their 

lifetime. 

 The observations data are discrete but non-categorical. 

 States are assumed to be persistent (i.e., 1( | )t tP S i S i   is relatively high), instead of 

flipping frequently. This assumption is reasonable for real industry machines or equipment 

which is generally consistent and keeps at one state for a while. This property will be 

exploited to identify the regimes that correspond to hidden states. 

 The number of states is assumed to be known, for our test we use 3 states, which stands for 

“normal”, “bad” and “serious damage” conditions of machines. The proposed method works 

for an arbitrary number of states. 

3.2. Basic idea: recognizing regimes 

As mentioned in the previous section, each hidden state of an HMM model is assumed to be persistent 

(i.e. self-transition probability 1( | )t tP S i S i   is higher than a threshold, for example, 0.9) in this 

paper, therefore, the signal can be split into multiple large regimes. In order to recognize various 

regimes, one way is to detect where the changes occur (i.e., ( | ) ( | )i jP O S P O S   ), where i  and 

j  represent different states and   is a threshold, meaning the observation distributions change when 

moving from one state to another). Segmentation techniques are used to detect such changes in 

behaviour, where each segment is supposed to belong to one state. Moreover, in order to combine the 

regimes that belong to the same states, a clustering method is applied in order to group the regimes 

that belong to the same state. Finally, the learned path of regimes can be seen as a hidden state path, 

which can be further used to learn the parameters of an HMM model. Figure 2 already shows that 

better initial parameters will converge faster to the optimal result, therefore, our method which learns 
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better initial parameters will improve the convergence speed of the method and likely also avoids local 

maxima. 

3.3. Scheme 

With the above idea, the learned parameters can be used as initial parameters of BW learning 

algorithm to avoid the faults caused by starting with random parameters. The intention of this pre-

processing step is to optimize the BW learning and lower the probability of getting stuck in local 

maxima. The whole assessment scheme is shown in figure 3. 

 

Figure 3. Scheme of performance assessment. 

 

Firstly, useful features of the sensors' signals are extracted. These features are not only used as 

training and testing data, but also applied for the parameters estimation.  

The selection of the initial parameters follows the steps as below: 

 Segmentation: uses Taylor [9] change point analysis to determine whether a change has taken 

place, then segment the observation data where there is a change. 

 Feature extraction: mean values of the low-pass filtered values or the RMS values inside 

each segment are used as the features to base the clustering on. 

 Clustering: segments with K-means, thus each cluster represents a hidden state. 

 Learn parameters: learn the parameters of the HMM defined by the number of states resulted 

from the clustering algorithm. 

Finally, a comparison between HMM models with and without random initializations are tested and 

compared with log-likelihood as an indicator of the performance. 

4. Algorithm details 

4.1. Change-point detection 

Taylor [9] proposed a change-point analysis method which is capable of detecting multiple changes. It 

iteratively uses a combination of cumulative sum charts (CUSUM) and bootstrapping techniques to 

detect the changes. 

CUSUM is defined as: let 1 2, , , NX X X  represent the N data points and 0 1, , , NS S S  be the 

cumulative sums. Let X  be the average values of the whole data set, and the start of the cumulative 

sum at zero be 0S . The cumulative sums are calculated by adding the difference between the current 

value and the average of the previous sum, which is 1 ( )i i iS S X X   , where 1,2, ,i N . A 

sudden turn (i.e. peak) in CUSUM chart indicates a change in the data sets, and bootstrap analysis is 

used to determine the change (or inflexion) with a confidence level. 

An estimator of the magnitude of the change is defined by the difference between the maximum 

and minimum values of the CUSUM results, i.e., max mindiffS S S  . Let 
' ' '

1 2, , , NX X X  be a 

bootstrap sample which is generated by reordering the original values. Let 
' ' '

0 1, , , NS S S  represent the 
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CUSUM of the bootstrap. The difference of the bootstrap CUSUM is denoted by
' ' '

max mindiffS S S  . A 

large number of bootstraps are performed and let X  denote the number of bootstraps for which

'

diff diffS S . The confidence level is calculated by 100 %
X

N
 , and typically 90% and 95%  

confidence is required. 

To determine when the change occurred quantitively, two estimators proposed by Taylor [9], which 

are: 

 CUSUM estimator: 

 
0,

| | max | |m i
i N

S S



 

(12) 

where mS  is the point furthest from zero in the CUSUM chart. 

 Mean square error (MSE) estimator: 

 
2 2

1 2

1 1

( ) ( ) ( )
m N

i i

i i m

MSE m X X X X
  

      (13) 

After a change is detected, the data set is split into two segments where on both sides, the same 

procedure is repeated. As a result, multiple changes are detected and the data set is divided into several 

segments. An example is shown in figure 4. 

 

Figure 4. CUSUM based change-point detection 

 

In figure 4, the solid line on the top represents the hidden states. The solid line in the middle 

represents the binary observations which have different probabilities within various regimes. In this 

case, the values are weighted values in order to show more clearly in the graph. The dotted line at the 

bottom is the CUSUM chart of the observations. A sudden turn of the CUSUM means that a change of 

regimes occurs. The red dotted vertical lines are the changes detected by change-point analysis 

method. 

4.2. Clustering 

After the observations are segmented, k-means clustering is applied to combine and label each 

segment. In the test, function ( , )kmeans X k  of Matlab is used, where X  is the input matrix and k  is 

the number of pre-defined clusters. These segments are assumed to be the hidden states of an HMM, 

based on which the initial parameters can be calculated by simple counting method. K-means 
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clustering technique is used here to label the states to identify similar states. An example of applying a 

k-means clustering with 3 states is shown in figure 5. 

 

 

 

 

Figure 5. K-means clustering with 3 states. 

The data set is generated with one sequence of 1426 data points, with 3 states and binary 

observations. Here in figure 5(b) the data was plotted with weighted values in order to be seen clearly. 

Based on the mean values of the low-pass filtering of each segment, K-means clustering is applied. 

The resultant 3 clusters are shown in figure 5(a). This clustering result is used to label each segment, 

resulting a learned (assumed) path of the hidden states shown at the bottom of figure 5(b). 

Note that with general K-means clustering the initial parameters are randomly generated which 

might lead to incorrect clustering and gives completely wrong clusters. For example, the top two 

nodes in the cluster 2 in the middle are sometimes wrongly clustered into cluster 3 on the top. In the 

proposed method, one extra step is added in the K-means clustering to check the results. If the 

maximum distance inside each cluster is larger than twice the minimum distance between clusters, 

then we redo the K-means clustering from the beginning. This check step is repeated a maximum 

number of times, here we used maximum 5 repetitions. Experiments show that each time the 

maximum distance inside each cluster is smaller than the minimum distance between clusters; 

therefore, using twice the minimum distance for checking is not critical in our test. 

4.3. Estimation of initial parameters 

HMM parameters (i.e. probability matrices) can be calculated by simple counting. Let iS  represents 

the current state, jS  represents the next state. Let S  represent the set of all states and O  the set of 

observations. The symbol #( )  represents the number of  . The initial parameters can be calculated 

as below: 

Initial state distribution: 

 
1 1 1

1 1 1

#( 1) #( 2) #( 3)

#( ) #( ) #( )

S S S

S S S


   
  
 

 (14) 

Transition probability distribution: 

 #( 1| 1) #( 2 | 1) #( 3 | 1)

#( 1) #( 1) #( 1)

#( 1| 2) #( 2 | 2) #( 3 | 2)

#( 2) #( 2) #( 2)

#( 1| 3) #( 2 | 3) #( 3 | 3)

#( 3) #( 3) #( 3)

j i j i j i

j i j i j i

j i j i j i

S S S S S S

S S S

S S S S S S
A

S S S

S S S S S S

S S S

      
 

   
      

  
   

      
 

    

 
(15) 
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Observation probability distribution: 

 #( 1| 1) #( 2 | 1) #( 3 | 1)

#( 1) #( 1) #( 1)

#( 1| 2) #( 2 | 2) #( 3 | 2)

#( 2) #( 2) #( 2)

#( 1| 3) #( 2 | 3) #( 3 | 3)

#( 3) #( 3) #( 3)

i i i

i i i

i i i

O S O S O S

S S S

O S O S O S
B

S S S

O S O S O S

S S S

      
 

  
 
      

  
   

      
 

   

 
(16) 

5. Simulation study 

Simulated signals are generated by randomly-generated HMM models and used to evaluate and 

compare the assessment performances of HMM models with random and non-random initial 

parameters. For simplicity, the number of states are set to be three and the observation data are 

generated with binary data (i.e., only 0s and 1s). To make sure the states are stable, we predefine the 

range of self-transition probabilities are above 0.95. Twenty sequences of 500 observations are 

generated as training data by sampling the HMM. The parameters of the generated HMM model is 

shown in table 2: 

Table 2. Parameters of the generated HMM model. 
   

Initial probabilities Transition probabilities Observation probabilities 

 0.33 0.33 0.33   

0.97 0.02 0.01

0.00 0.99 0.01

0.03 0.01 0.96

A

 
 


 
  

 

0.76 0.24

0.46 0.54

0.43 0.57

B

 
 
 
  

 

 

To learn the data set and compare the results with both the traditional HMM learning and 

segmentation-based HMM method, the test was repeated 5 times, the results are shown in figure 6: 

 

Figure 6. Comparison of the learning methods. 

 

In figure 6, the log-likelihood of the 5 runs using segmentation-based initialization are plotted with 

asterisks, while the traditional HMM learning are plotted with circles. The number of repetitions and 

log-likelihood values are shown in table 3. 
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The results show that in general segmentation-based HMM learning has a better log-likelihood and 

needs fewer iteration steps than randomly initialized one. Moreover, there is one within the randomly 

initialized HMM learning which is trapped into a local maxima of -0.6746 within 5 steps. 

 

Table 3. Comparisons of log-likelihood and number of repetitions. 
      

Repetitions 1 2 3 4 5 

Log-likelihood HMM -0.5522 -0.5523 -0.6746 -0.5535 -0.5510 

Log-likelihood Seg-HMM -0.5389 -0.5389 -0.5389 -0.5389 -0.5389 

Log-likelihood Difference -0.0133 -0.0135 -0.1357 -0.0147 -0.0121 

Num Iterations HMM 20 20 12 20 20 

Num Iterations Seg-HMM 8 8 7 8 7 

Num Iterations Difference 12 12 5 12 13 

 

To further compare the results, a similar test is conducted with varying amount of data sizes and 

random parameters. The amounts of sequences are set from 10 to 50 with an increasing step of 10, and 

within each sequence, the sizes of the data points are set from 100 to 500 with an increasing step of 

100. Therefore, in total 25 data sets are generated randomly with 3 states and binary observations. 

Figure 7 shows the comparison of the results with both methods: 

 

 

 

 

Figure 7. Comparisons with varying amount of data sizes. 

From figure 7, we can see that in general segmentation-based HMM uses fewer number of iterations 

and has better log-likelihood values. The average values of the number of iterations and log-likelihood 

are calculated and compared in the table below: 

 

Table 4. Comparisons of log-likelihood and number of repetitions. 
 

Methods HMM Seg-HMM Differences 

Log-likelihood -0.5846 -0.5503 -0.0343 

Num of Iterations 17.12 9.24 7.88 

6. Experimental study 

The proposed method was trained and tested on the bearing data of NASA [10]. Four bearings were 

installed on one shaft. The angular velocity was kept constant at 2000 rpm and a 6000 lb radial load 
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was applied onto the shaft and bearings (figure 8). On each bearing two accelerometers (one horizontal 

X and one vertical Y) were installed for a total of 8 accelerometers to register the accelerations 

generated by the vibrations, where the sampling rate was fixed at 20 kHz [11]. 

 

 

Figure 8. Bearing test rig and sensor placement illustration [12]. 

Bearing 3 in test 1 is considered failed at the end of its associated history. In the test, four condition 

monitoring data histories related to bearing 2 and 3 in test 1 are used as training set. The monitoring 

history related to bearing 3 in test 1 is used as test set. The test result is shown in figure 9. To 

transform the continuous signal into discrete one, the vibrations histories are processed with root mean 

square values (figure 9(a)) and quantized (i.e. rounded) to the nearest integer (figure 9(b)). Quantized 

data are then used as observations, based on which both traditional HMM learning and segmentation-

based HMM learning methods are applied to learn the hidden states, shown in figure 9(c) and figure 

9(d) respectively. Figure 9(c) shows a frequently fluctuated path while figure 9(d) shows a rather 

persistent path. Note that for all models the numbers of the states are assumed to be three. 

 

Figure 9. Bearing performance assessment. 

Traditional HMM learning uses 8 iterations and achieves a log-likelihood of -0.0443, while 

segmentation-based HMM learning uses 4 iterations and gets a log-likelihood of -0.0135. This shows 

that the proposed method has a better log-likelihood and a relatively faster speed for learning. 
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7. Conclusion 

The proposed method contains the following three steps: 1. estimation of initial parameters (with 

segmentation and clustering techniques), 2. learning and 3. evaluation. Firstly, to exact useful features 

from the data obtained from the sensors, change-point analysis method which uses a combination of 

cumulative sum charts (CUSUM) and bootstrapping techniques is applied for data segmentation. It 

determines with a confidence level that a state change happened instead of an accidental change in 

behavior. The resultant segments can be seen as corresponding to different states of the equipment. To 

label and combine segments belonging to the same state, a clustering algorithm is used on the low-

pass filtering or root mean square (RMS) values of the feature data. These features related to their 

hidden states are taken as “evidence” to estimate the parameters of an HMM. Moreover, the estimated 

parameters are served as initial input model parameters for the traditional Baum-Welch (BW) learning 

algorithm, which is used to re-estimate parameters and train the model. In the last step, the learned 

model is used to assess the equipment conditions for further maintenance. The benefits of this 

approach is that it pre-processes the data with an intelligent but simple way to learn initial parameters, 

which is more accurate than regular BW learning methods with randomly generated initial parameters. 

Log-likelihood values are used to describe the diagnostic performances of the models and compare the 

models. Moreover, the extracted features, on which the learning can be based on, provide evidence for 

the learned model while traditional learning is only based on a global score. 

We have shown that for systems with persistent states, segmentation of the observations is possible 

by change-point detection since systems behavior changes from one state to another. Based on 

segmentation, initial parameters can be estimated. The results have been empirically proven on both a 

test case as well as an industrial benchmark. It is shown that the proposed method to select initial 

parameters speeds up the learning of the HMM models with fewer iterations and better log-likelihood 

values in general. Better log-likelihood means better accuracy. In the future work, we would like to 

test on different HMMs, such as Hidden semi-Markov Model [13, 14, 15]. The results will be verified 

to see whether it reaches global maxima in the learning algorithm. Moreover, other performance 

indicators other than log-likelihood will be tested as well. 
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